Algebra
• a2 – b2 = (a – b)(a + b)
• (a+b)2 = a2 + 2ab + b2
• a2 + b2 = (a – b)2 + 2ab
• (a – b)2 = a2 – 2ab + b2
• (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
• (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
• (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• a3 – b3 = (a – b)(a2 + ab + b2)
• a3 + b3 = (a + b)(a2 – ab + b2)
• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
• a4 – b4 = (a – b)(a + b)(a2 + b2)
• a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
• If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
• If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
• If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
• (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
• Laws of Exponents
(am)(an) = am+n
(ab)m = ambm
(am)n = amn
• Fractional Exponents
a0 = 1
$\frac{a^{m}}{a^{n}} = a^{m-n}$
$a^{m}$ = $\frac{1}{a^{-m}}$
$a^{-m}$ = $\frac{1}{a^{m}}$
Area
Area of a Pentagon Formula:
A = 52sa
Where,
s is the side of the pentagon.
a is the apothem length.

Area of a Trapezoid = A = $\frac{1}{2}$ $\times$ h $\times$ (a + b)
Where:
h = height (Note – This is the perpendicular height, not the length of the legs.)
a = the short base
b = the long base

The Area of a Rectangle Formula is, A = l $\times$ b
Where,
l = Length
b = Breadth

Area of sector = $\frac{\theta}{360}$ $\times$ $\pi$ $r^2$
Length of an arc of a sector = $\frac{\theta}{360}$ $\times$ 2$\pi$r

Area Formula of Quadrilaterals

Area of a Square = $Side^{2}$
Area of a Kite = $\frac{1}{2}$diagonal
Area of a Parallelogram = base $\times$ height
Area of a Rectangle = base $\times$ height
Area of a Trapezoid = $\frac{base_{1}+base_{2}}{2}height$

The Area of a Rhombus Formula is,
4 × area of ∆ AOB
= 4 × $\frac{1}{2}$ × AO × OB sq. units
= 4 × $\frac{1}{2}$ × $\frac{1}{2}$ $d_{1}$ × $\frac{1}{2}$ $d_{2}$ sq. units
= 4 × $\frac{1}{8}$ $d_{1}$ × $d_{2}$ square units
= $\frac{1}{2}$ × $d_{1}$ × $d_{2}$
Therefore
Where, Area of a Rhombus = A = $\frac{1}{2}$ × $d_{1}$ × $d_{2}$
$d_{1}$ and $d_{2}$ are the diagonals of the rhombus.

The Area of a Parallelogram is,
Area = b $\times$ h
Where, b is the length of any base and h is the corresponding altitude or height

The Area of a SquareFormula is,
Area = $a^2$
Where, a is the length of the side of a square
Area of Circle = $\pi$ r2 = $\frac{\pi d^2}{4}$ = $\frac{C \times r}{2}$
Where,
r is the radius of the circle.
d is the diameter of the circle.
C is the circumference of the circle.

Area of a regular polygon

#### A =$\frac{l^{2}n}{4tan(\frac{\pi }{n})}$

Where,
l is the side length
n is the number of sides

The Area of a Hexagon
A = 3sr
Where,
s is the side of the hexagon.
r is the radius of the hexagon.

Area of Octagon =
2$a^2 (1 + \sqrt{2})$ Where,
r is the radius of the circle.
d is the diameter of the circle.
C is the circumference of the circle.

Area under the Curve Formula

$Area = \int_{a}^{b}f(x)dx$

Arithmetic Sequence
$\LARGE a_{n}=a_{1}+(n-1)d$

Where,
an – nth term that has to be found
a1 – 1st term in the seriesn
n- number of terms
d – common difference

Binomial-distribution
$\large P(x) = \frac{n!}{r!(n-r)!} . p^{r}(1-p)^{n} = C(n, r).p^{r}(1-p)^{n-r}$
Where,
n = Total number of events
r = Total number of successful events.
p = Probability of success on a single trial.

nCr = $\frac{n!}{r!(n − r)!}$

Calculus
$\large \frac{d}{dx}r^{n} = nx^{n-1}$

$\large \frac{d}{dx}(fg) = fg^{1} + gf^{1}$

$\large \frac{d}{dx}\left (\frac{f}{g} \right ) = \frac{gf^{1}-fg^{1}}{g^{2}}$

$\large \frac{d}{dx} f(g(x))= f^{1}(g(x)) g^{1}(x)$

$\large \frac{d}{dx} (\sin\: x)= \cos\: x$

$\large \frac{d}{dx} (\cos\: x)= -\sin\: x$

$\large \frac{d}{dx} (\tan\: x)= -\sec^{2}\: x$

$\large \frac{d}{dx} (\cot\: x)= \csc^{2}\: x$

$\large \frac{d}{dx} (\sec\: x)= \sec\: x \tan\: x$

$\large \frac{d}{dx} (\csc\: x)= -\csc\: x \cot\: x$

$\large \frac{d}{dx} (e^{x}) = e^{x}$

$\large \frac{d}{dx} (a^{x}) = a^{x} \ln \: a$

$\large \frac{d}{dx} \ln \: x = \frac{1}{x}$

$\large \frac{d}{dx} (\arcsin x) = \frac{1}{\sqrt{1-x^{2}}}$

$\large \frac{d}{dx} (\arcsin x) = \frac{1}{1+x^{2}}$

Integration Formulas

$\large \int a\: dr = ax + C$

$\large \int \frac{1}{x}\: dr = \ln |x| + C$

$\large \int e^{x}\: dx = e^{x} + C$

$\large \int a^{x}\: dx = \frac{e^{x}}{\ln a} + C$

$\large \int \ln x\: dx = x \ln x-x+C$

$\large \int \sin\: x\: dx = -\cos \: x +C$

$\large \int \cos\: x\: dx = \sin \:x + C$

$\large \int \tan \: dr + \ln |\sec\: x| + C\: or\: -\ln |\cos \: x| + C$

$\large \int\cot\:x\:dr = \ln |\sin\:x|+C$

$\large \int\sec\:x\:dx = \ln |\sec\:x + \tan\:x|+C$

$\large \int\csc\:x\:dx = \ln |\csc \:x – \cot \:x|+C$

$\large \int\sec^{2}\:x\:dx = \tan\:x+C$

$\large \int\sec\:x\:\tan\:x\:dx = \sec\:x+C$

$\large \int\csc^{2}\:x\:dr = -\cot\:x+C$

$\large \int\tan^{2}\:x\:dr = \tan\:x-x+C$

$\large \int \frac{dr}{\sqrt{a^{2}-x^{2}}} = \arcsin \left ( \frac{x}{a} \right )+C$

$\large \int \frac{dr}{\sqrt{a^{2}+x^{2}}} = \frac{1}{a}\arcsin \left ( \frac{x}{a} \right )+C$

Basic Math Formulas

$\large Adding Fractions: \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$

$\large Subtracting Fractions: \frac{a}{b} – \frac{c}{d} = \frac{ad – bc}{bd}$

$\large Multiplying Fractions: \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

$\large Dividing Fractions: \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

$\large Proportion Formula: \frac{a}{b} = \frac{c}{d} ; ad = bc$

In a proportion, the product of the extremes (ad) equal the product of the means(bc). Thus, ad = bc

Percent Formulas:

$\large Percent Formulas: x\% = \frac{x}{100}$

$\large Percentage Formula: \frac{Rate}{100} = \frac{Percentage}{base}$

Where,
Rate: The percent.
Base: The amount you are taking the percent of.
Percentage: The answer obtained by multiplying the base by the rate

Complex Number

#### Equality of Complex Numbers Formula

$\LARGE a+bi=c+di\Leftrightarrow a=c\:\:and\:\:b=d$

#### Addition of Complex Numbers

$\LARGE (a+bi)+(c+di)=(a+c)+(b+d)i$

#### Subtraction of Complex Numbers

$\LARGE (a+bi)-(c+di)=(a-c)+(b-d)i$

#### Multiplication of Complex Numbers

$\LARGE (a+bi)\times(c+di)=(ac-bd)+(ad+bc)i$

#### Multiplication Conjugates

$\LARGE (a+bi)(a+bi)=a^{2}+b^{2}$

#### Division of Complex Numbers

$\LARGE \frac{(a+bi)}{(c+di)}=\frac{a+bi}{c+di}\times\frac{c-di}{c-di}=\frac{ac+bd}{c^{2}+d^{2}}+\frac{bc-ad}{c^{2}+d^{2}}i$

Logarithm

$\large e^{x} = b$

##### Taking log on both the sides, we have

$\large log _{e}\; e^{x} = log_{e} \; b$

$\large x = log_{e} \; b$

#### Trivial Identities

$\large \log _{b} (1) = 0; \; because \; b^{0}=1; \; b> 0$
$\large \log _{b} (b) = 1; \; because \; b^{1}=b$

#### Basic Logarithm Formulas

$\large \log _{b} (xy) = \log _{b}(x) + \log _{b}(y)$
$\large \log _{b}\left ( \frac{x}{y} \right ) = \log _{b}(x) – \log _{b}(y)$
$\large \log_{b}(x^{d})= d \log_{b}(x)$
$\large \log_{b}(\sqrt[y]{x})= \frac{\log_{b}(x)}{y}$
$\large c\log_{b}(x)+d\log_{b}(y)= \log_{b}(x^{c}y^{d})$

#### Changing the Base

$\large \log_{b}a = \frac{\log_{d}(a)}{\log_{d}(b)}$

#### Addition & Subtraction

$\large \log_{b} (a+c) = \log_{b}a + \log_{b}\left ( 1 + \frac{c}{a} \right )$
$\large \log_{b} (a-c) = \log_{b}a + \log_{b}\left ( 1 – \frac{c}{a} \right )$

#### Exponents

$\large x^{\frac{\log(\log(x))}{\log(x)}} \; = \; \log(x)$

Polygon

Polygon formula to find area:

$\large Area\;of\;a\;regular\;polygon=\frac{1}{2}n\; sin\left(\frac{360^{\circ}}{n}\right)s^{2}$

Polygon formula to find interior angles:

$\large Interior\;angle\;of\;a\;regular\;polygon=\left(n-2\right)180^{\circ}$

Polygon formula to find the triangles:

$\large Interior\;of\;triangles\;in\;a\;polygon=\left(n-2\right)$

Where,
n is the number of sides and S is the length from center to corner.

Polynomial

The general Polynomial Formula is written as,

$ax^{n} + bx^{n-1} + ….. + rx + s = 0$

If n is a natural number, an – bn = (a – b)(an-1 + an-2 +…+ bn-2a + bn-1)

If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)

If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)

(a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….

Square
Area of Square = $a^2$
Area of Square = 4a
Area of Square = $a\sqrt{2}$
Where
a is the length of a side of the square.
Trajectory

$\large y=x\:tan\,\theta-\frac{gx^{2}}{2v^{2}\,cos^{2}\,\theta}$

Where,
y is the horizontal component,
x is the vertical component,
g= gravity value,
v= initial velocity,
$\theta$ = angle of inclination of the initial velocity from horizontal axis,

Trajectory related equations are:

$\large Time\;of\;Flight: t=\frac{2v_{0}\,sin\,\theta}{g}$

$\large Maximum\;height\;reached: H=\frac{_{0}^{2}\,sin^{2}\,\theta}{2g}$

$\large Horizontal\;Range: R=\frac{V_{0}^{2}\,sin\,2\,\theta}{g}$

Where,
Vo is the initial Velocity,
sin $\theta$ is the y-axis vertical component,
cos $\theta$ is the x-axis horizontal component.

Surface Area

Surface Area of a Sphere = 4$\pi r^2$

Surface area of a Square Pyramid = 2bs +$b^2$

Surface area of a triangular prism = ab +3bh

Square Footage

$\large Square\;Footage=Length\times Breadth$

To find out the Square Footage Formula for a triangular area,

$\large Square\;Footage=\frac{Breadth\times Length}{2}$

Permutation

$\large Permutation=\:_{n}P_{r}=\frac{n!}{(n-1)!}$

$\large Permutation with Repetition=n^{r}$

Maths Formula Categories

# Algebra Calculator Formula

Convert just about anything to anything else. Thousands of units, and millions of conversions.

algebra calculator formula